inv.tran.plot {alr3}R Documentation

Choose a predictor transformation visually or numerically

Description

inv.tran.plot draws a two-dimensional scatterplot of Y versus X, along with the OLS fit from the regression of Y on (Y^(lam)-1)/lam. inv.tran.estimate find the nonlinear least squares estimate of lambda and its standard error.

Usage

inv.tran.plot(x,y,lambda=c(-1,0,1),lty=1:(1+length(lambda)),
        col=rainbow(length(lambda)+1),xlab=deparse(substitute(x)),
        ylab=deparse(substitute(y)),family="box.cox",optimal=TRUE,
        key="topleft",...)

inv.tran.estimate(x,y,family="box.cox",...)

Arguments

x

The predictor variable

y

The response variable

lambda

The powers used in the plot. The optimal power than minimizes the residual sum of squares is always added unless optimal is FALSE.

family

The transformation family to use, "box.cox", "yeo.johnson", or a user-defined family.

optimal

Include the optimal value of lambda?

lty

line types corresponding to the powers

col

color corresponding to the powers

key

The default is "topleft", in which case a legend is added to the top left corner of the plot; other choices include "bottomright". If key is a vector of two coordinates, the legend is drawn at the coordinates specified. If key is FALSE, no key is drawn; if TRUE, you can place the key interactively by clicking on the plot.

xlab

Label for the horizontal axis.

ylab

Label for the vertical axis.

...

additional arguments passed to other methods.

Value

inv.tran.plot returns a graph and a data.frame with lam in the first column, and the residual sum of squares from the regression for that lam in the second column.

inv.tran.estimate returns a list with elements lambda for the estimate, se for its standard error, and RSS, the minimum value of the residual sum of squares.

Author(s)

Sanford Weisberg, sandy@stat.umn.edu

References

Weisberg, S. (2005). Applied Linear Regression, third edition. New York: Wiley.

See Also

powtran, inverse.response.plot, optimize, nls

Examples

data(baeskel)
attach(baeskel)
inv.tran.plot(Sulfur,Tension,key=c(.6,450))
ans <-inv.tran.estimate(Sulfur,Tension)
# redraw the plot, including the nls estimate
inv.tran.plot(Sulfur,Tension,lambda=c(ans$lambda,-1,0,1),key=c(.6,450))

[Package alr3 version 1.1.12 Index]