
zoo FAQ

Gabor Grothendieck
GKX Associates Inc.

Achim Zeileis
Wirtschaftsuniversität Wien

Abstract

This is a collection of frequently asked questions (FAQ) about the zoo package together
with their answers.

Keywords: irregular time series, daily data, weekly data, returns.

1. I know that duplicate times are not allowed but my data has them.
What do I do?

zoo objects should not normally contain duplicate times. If you try to create such an object
using zoo or read.zoo then warnings will be issued but the objects will be created. The user
then has the opportunity to fix them up – typically by using aggregate.zoo or duplicated.

Merging is not well defined for duplicate series with duplicate times and rather than give an
undesired or unexpected result, merge.zoo issues an error message if it encounters such illegal
objects. Since merge.zoo is the workhorse behind many zoo functions, a significant portion
of zoo will not accept duplicates among the times. Typically duplicates are eliminated by
(1) averaging over them, (2) taking the last among each run of duplicates or (3) interpolat-
ing the duplicates and deleting ones on the end that cannot be interpolated. These three
approaches are shown here using the aggregate.zoo function. Another way to do this is
to use the aggregate argument of read.zoo which will aggregate the zoo object read in by
read.zoo all in one step.

Note that in the example code below that force is the identity function (i.e. it just returns
its argument). It is an R core function:

A "zoo" series with duplicated indexes

> z <- suppressWarnings(zoo(1:8, c(1, 2, 2, 2, 3, 4, 5, 5)))

> z

1 2 2 2 3 4 5 5
1 2 3 4 5 6 7 8

Fix it up by averaging duplicates:

> aggregate(z, force, mean)

1 2 3 4 5
1.0 3.0 5.0 6.0 7.5

2 zoo FAQ

Or, fix it up by taking last in each set of duplicates:

> aggregate(z, force, tail, 1)

1 2 3 4 5
1 4 5 6 8

Fix it up via interpolation of duplicate times

> time(z) <- na.approx(ifelse(duplicated(time(z)), NA, time(z)),

+ na.rm = FALSE)

If there is a run of equal times at end they wind up as NAs and we cannot have NA times.

> z[!is.na(time(z))]

1 2 2.3333 2.6667 3 4 5
1 2 3 4 5 6 7

The read.zoo command has an aggregate argument that supports arbitrary summarization.
For example, in the following we take the last value among any duplicate times and sum the
volumes among all duplicate times. We do this by reading the data twice, once for each
aggregate function. In this example, the first three columns are junk that we wish to suppress
which is why we specified colClasses; however, in most cases that argument would not be
necessary.

> Lines <- "1|BHARTIARTL|EQ|18:15:05|600|1\n2|BHARTIARTL|EQ|18:15:05|600|99\n3|GLENMARK|EQ|18:15:05|238.1|5\n4|HINDALCO|EQ|18:15:05|43.75|100\n5|BHARTIARTL|EQ|18:15:05|600|1\n6|BHEL|EQ|18:15:05|1100|11\n7|HINDALCO|EQ|18:15:06|43.2|1\n8|CHAMBLFERT|EQ|18:15:06|46|10\n9|CHAMBLFERT|EQ|18:15:06|46|90\n10|BAJAUTOFIN|EQ|18:15:06|80|100"

> library("zoo")

> library("chron")

> tail1 <- function(x) tail(x, 1)

> cls <- c("NULL", "NULL", "NULL", "character", "numeric", "numeric")

> nms <- c("", "", "", "time", "value", "volume")

> z <- read.zoo(textConnection(Lines), aggregate = tail1, FUN = times,

+ sep = "|", colClasses = cls, col.names = nms)

> z2 <- read.zoo(textConnection(Lines), aggregate = sum, FUN = times,

+ sep = "|", colClasses = cls, col.names = nms)

> z$volume <- z2$volume

> z

value volume
18:15:05 1100 217
18:15:06 80 201

2. When I try to specify a log axis to plot.zoo a warning is issued. What
is wrong?

Arguments that are part of ... are passed to the panel function and the default panel
function, lines, does not accept log. Either ignore the warning, use suppressWarnings (see
?suppressWarnings) or create your own panel function which excludes the log:

Achim Zeileis, Gabor Grothendieck 3

> z <- zoo(1:100)

> plot(z, log = "y", panel = function(..., log) lines(...))

3. How do I create right and a left vertical axes in plot.zoo?

The following shows an example of creating a plot containing a single panel and both left and
right axes.

> set.seed(1)

> z.Date <- as.Date(paste(2003, 2, c(1, 3, 7, 9, 14), sep = "-"))

> z <- zoo(cbind(left = rnorm(5), right = rnorm(5, sd = 0.2)),

+ z.Date)

> plot(z[, 1], xlab = "Time", ylab = "")

> opar <- par(usr = c(par("usr")[1:2], range(z[, 2])))

> lines(z[, 2], lty = 2)

> axis(side = 4)

> legend("bottomright", lty = 1:2, legend = colnames(z), bty = "n")

> par(opar)

−
0.

5
0.

0
0.

5
1.

0
1.

5

Time

Feb 01 Feb 03 Feb 05 Feb 07 Feb 09 Feb 11 Feb 13

−
0.

15
−

0.
05

0.
05

left
right

Figure 1: Left and right plot.zoo axes.

4. I have data frame with both numeric and factor columns. How do I
convert that to a "zoo" object?

A "zoo" object may be (1) a numeric vector, (2) a numeric matrix or (3) a factor but may

4 zoo FAQ

not contain both a numeric vector and factor. You can do one of the following.

Use two "zoo" variables instead:

> DF <- data.frame(time = 1:4, x = 1:4, f = factor(letters[c(1,

+ 1, 2, 2)]))

> zx <- zoo(DFx, DFtime)

> zf <- zoo(DFf, DFtime)

These could also be held in a "data.frame" again:

> DF2 <- data.frame(x = zx, f = zf)

Or convert the factor to numeric and create a single "zoo" series:

> z <- zoo(data.matrix(DF[-1]), DF$time)

5. Why does lag give slightly different results on a "zoo" and a "zooreg"
series which are otherwise the same?

To be definite let us consider the following examples, noting how both lag and diff give a
different answer with the same input except its class is "zoo" in one case and "zooreg" in
another:

> z <- zoo(11:15, as.Date("2008-01-01") + c(-4, 1, 2, 3, 6))

> zr <- as.zooreg(z)

> lag(z)

2007-12-28 2008-01-02 2008-01-03 2008-01-04
12 13 14 15

> lag(zr)

2007-12-27 2008-01-01 2008-01-02 2008-01-03 2008-01-06
11 12 13 14 15

> diff(log(z))

2008-01-02 2008-01-03 2008-01-04 2008-01-07
0.08701138 0.08004271 0.07410797 0.06899287

> diff(log(zr))

2008-01-03 2008-01-04
0.08004271 0.07410797

Achim Zeileis, Gabor Grothendieck 5

lag.zoo and lag.zooreg work differently. For "zoo" objects the lagged version is obtained
by moving values to the adjacent time point that exists in the series but for "zooreg" objects
the time is lagged by deltat, the time between adjacent regular times.

A key implication is that "zooreg" can lag a point to a time point that did not previously
exist in the series and, in particular, can lag a series outside of the original time range whereas
that is not possible in a "zoo" series.

Note that lag.zoo has an na.pad= argument which in some cases may be what is being
sought here.

The difference between diff.zoo and diff.zooreg stems from the fact that diff(x) is
defined in terms of lag like this: x-lag(x,-1).

6. How do I subtract the mean of each month from a "zoo" series?

Suppose we have a daily series. To subtract the mean of Jan 2007 from each day in that
month, subtract the mean of Feb 2007 from each day in that month, etc. try this:

> set.seed(123)

> z <- zoo(rnorm(100), as.Date("2007-01-01") + seq(0, by = 10,

+ length = 100))

> z.demean1 <- z - ave(z, as.yearmon(time(z)))

This first generates some artificial data and then employs ave to compute monthly means.

To subtract the mean of all Januaries from each January, etc. try this:

> z.demean2 <- z - ave(z, format(time(z), "%m"))

7. How do I create a monthly series but still keep track of the dates?

Create a S3 subclass of "yearmon" called "yearmon2" that stores the dates as names on
the time vector. It will be sufficient to create an as.yearmon2 generic together with an
as.yearmon2.Date methods as well as the inverse: as.Date.yearmon2.

> as.yearmon2 <- function(x, ...) UseMethod("as.yearmon2")

> as.yearmon2.Date <- function(x, ...) {

+ y <- as.yearmon(with(as.POSIXlt(x, tz = "GMT"), 1900 + year +

+ mon/12))

+ names(y) <- x

+ structure(y, class = c("yearmon2", class(y)))

+ }

as.Date.yearmon2 is inverse of as.yearmon2.Date

> as.Date.yearmon2 <- function(x, frac = 0, ...) {

+ if (!is.null(names(x)))

+ return(as.Date(names(x)))

6 zoo FAQ

+ x <- unclass(x)

+ year <- floor(x + 0.001)

+ month <- floor(12 * (x - year) + 1 + 0.5 + 0.001)

+ dd.start <- as.Date(paste(year, month, 1, sep = "-"))

+ dd.end <- dd.start + 32 - as.numeric(format(dd.start + 32,

+ "%d"))

+ as.Date((1 - frac) * as.numeric(dd.start) + frac * as.numeric(dd.end),

+ origin = "1970-01-01")

+ }

This new class will act the same as "yearmon" stores and allows recovery of the dates using
as.Date and aggregate.zoo.

> dd <- seq(as.Date("2000-01-01"), length = 5, by = 32)

> z <- zoo(1:5, as.yearmon2(dd))

> z

Jan 2000 Feb 2000 Mar 2000 Apr 2000 May 2000
1 2 3 4 5

> aggregate(z, as.Date, force)

2000-01-01 2000-02-02 2000-03-05 2000-04-06 2000-05-08
1 2 3 4 5

8. How are axes added to a plot created using plot.zoo?

On single panel plots axis or Axis can be used just as with any classic graphics plot in R.

The following example adds custom axis for single panel plot. It labels months but uses the
larger year for January. Months, quarters and years should have successively larger ticks.

> z <- zoo(0:500, as.Date(0:500))

> plot(z, xaxt = "n")

> tt <- time(z)

> m <- unique(as.Date(as.yearmon(tt)))

> jan <- format(m, "%m") == "01"

> mlab <- substr(months(m[!jan]), 1, 1)

> axis(side = 1, at = m[!jan], labels = mlab, tcl = -0.3, cex.axis = 0.7)

> axis(side = 1, at = m[jan], labels = format(m[jan], "%y"), tcl = -0.7)

> axis(side = 1, at = unique(as.Date(as.yearqtr(tt))), labels = FALSE)

> abline(v = m, col = grey(0.8), lty = 2)

A multivariate series can either be generated as (1) multiple single panel plots:

> z3 <- cbind(z1 = z, z2 = 2 * z, z3 = 3 * z)

> opar <- par(mfrow = c(2, 2))

Achim Zeileis, Gabor Grothendieck 7

> tt <- time(z)

> m <- unique(as.Date(as.yearmon(tt)))

> jan <- format(m, "%m") == "01"

> mlab <- substr(months(m[!jan]), 1, 1)

> for (i in 1:ncol(z3)) {

+ plot(z3[, i], xaxt = "n", ylab = colnames(z3)[i], ylim = range(z3))

+ axis(side = 1, at = m[!jan], labels = mlab, tcl = -0.3, cex.axis = 0.7)

+ axis(side = 1, at = m[jan], labels = format(m[jan], "%y"),

+ tcl = -0.7)

+ axis(side = 1, at = unique(as.Date(as.yearqtr(tt))), labels = FALSE)

+ }

> par(opar)

or (2) as a multipanel plot. In this case any custom axis must be placed in a panel function.

> plot(z3, screen = 1:3, xaxt = "n", nc = 2, ylim = range(z3),

+ panel = function(...) {

+ lines(...)

+ panel.number <- parent.frame()$panel.number

+ nser <- parent.frame()$nser

+ if (panel.number%%2 == 0 || panel.number == nser) {

+ tt <- list(...)[[1]]

+ m <- unique(as.Date(as.yearmon(tt)))

+ jan <- format(m, "%m") == "01"

+ mlab <- substr(months(m[!jan]), 1, 1)

+ axis(side = 1, at = m[!jan], labels = mlab, tcl = -0.3,

+ cex.axis = 0.7)

+ axis(side = 1, at = m[jan], labels = format(m[jan],

+ "%y"), tcl = -0.7)

+ axis(side = 1, at = unique(as.Date(as.yearqtr(tt))),

+ labels = FALSE)

+ }

+ })

9. Why is nothing plotted except axes when I plot an object with many
NAs?

Isolated points surrounded by NA values do not form lines:

> z <- zoo(c(1, NA, 2, NA, 3))

> plot(z)

So try one of the following:

Plot points rather than lines.

> plot(z, type = "p")

8 zoo FAQ

Omit NAs and plot that.

> plot(na.omit(z))

Fill in the NAs with interpolated values.

> plot(na.approx(z))

Plot points with lines superimposed.

> plot(z, type = "p")

> lines(na.omit(z))

Note that this is not specific to zoo. If we plot in R without zoo we get the same behavior.

10. Does zoo work with Rmetrics?

Yes. timeDate class objects from the timeDate package can be used directly as the index of
a zoo series and as.timeSeries.zoo and as.zoo.timeSeries can convert back and forth
between objects of class zoo and class timeSeries from the timeSeries package.

> library("timeDate")

> dts <- c("1989-09-28", "2001-01-15", "2004-08-30", "1990-02-09")

> tms <- c("23:12:55", "10:34:02", "08:30:00", "11:18:23")

> td <- timeDate(paste(dts, tms), format = "%Y-%m-%d %H:%M:%S")

> library("zoo")

> z <- zoo(1:4, td)

> zz <- merge(z, lag(z))

> plot(zz)

> library("timeSeries")

> zz

z lag(z)
1989-09-28 23:12:55 1 4
1990-02-09 11:18:23 4 2
2001-01-15 10:34:02 2 3
2004-08-30 08:30:00 3 NA

> as.timeSeries(zz)

GMT
z lag(z)

1989-09-28 23:12:55 1 4
1990-02-09 11:18:23 4 2
2001-01-15 10:34:02 2 3
2004-08-30 08:30:00 3 NA

> as.zoo(as.timeSeries(zz))

Achim Zeileis, Gabor Grothendieck 9

z lag(z)
1989-09-28 23:12:55 1 4
1990-02-09 11:18:23 4 2
2001-01-15 10:34:02 2 3
2004-08-30 08:30:00 3 NA

10 zoo FAQ

11. What other packages use zoo?

Depends
AER Applied econometrics with R
BootPR Bootstrap prediction intervals and bias-corrected forecasting
dyn Time-series regression
dynlm Dynamic linear regression
fda Functional data analysis
FinTS Companion to Tsay’s “Analysis of financial time series”
fUtilities Rmetrics function utilities
fxregime Exchange rate regime analysis
lmtest Testing linear regression models
party Recursive partytioning toolbox
PerformanceAnalytics Econometric tools for performance and risk analysis
quantmod Quantitative financial modelling framework
RBloomberg R/Bloomberg interface
sandwich Robust covariance matrix estimators
strucchange Testing, monitoring, and dating structural changes
tis Regular time series package, previously part of fame package
tripEstimation Metropolis sampler and supporting functions for estimating

animal movement from archival tags and satellite fixes
tseries Time series analysis and computational finance
VhayuR R Interface to the Vhayu time series database
xts Extensible time series
Suggests
gsubfn Utilities for strings and function arguments
pscl Political Science Computational Laboratory, Stanford Uni-

versity
TSSQLite Time series database interface extentions for SQLite
TSdbi Time series database interface
Zelig Everyone’s statistical software
Uses or Used with
timeDate Rmetrics date and time functions: timeDate usable with

zoo
grid Graphics infrastructure: use with xyplot.zoo
its Irregular time series: as.its.zoo, as.zoo.its
lattice grid-based graphics: use with xyplot.zoo
playwith Interactive graphics: works with xylot.zoo
timeSeries Rmetrics time series functions: as.timeSeries.zoo,

as.zoo.timeSeries
YaleToolkit Data exploration tools from Yale University: accepts "zoo"

input

Why does ifelse not work as I expect?

The ordinary R ifelse function only works with zoo objects if all three arguments are zoo
objects with the same time index. zoo provides an ifelse.zoo function that should be used

Achim Zeileis, Gabor Grothendieck 11

instead. The .zoo part must be written out since ifelse is not generic.

> z <- zoo(c(1, 5, 10, 15))

> ifelse(diff(z) > 4, -z, z)

2 3 4
1 -5 -10

> ifelse.zoo(diff(z) > 4, -z, z)

1 2 3 4
NA 5 -10 -15

> xm <- merge(z, dif = diff(z))

> with(xm, ifelse(dif > 4, -z, z))

1 2 3 4
NA 5 -10 -15

> ifelse(diff(z, na.pad = TRUE) > 4, -z, z)

1 2 3 4
NA 5 -10 -15

Affiliation:

Gabor Grothendieck
GKX Associates Inc.
E-mail: ggrothendieck@gmail.com

Achim Zeileis
Wirtschaftsuniversität Wien
E-mail: Achim.Zeileis@R-project.org

mailto:ggrothendieck@gmail.com
mailto:Achim.Zeileis@R-project.org

	1. I know that duplicate times are not allowed but my data has them. What do I do?
	2. When I try to specify a log axis to plot.zoo a warning is issued. What is wrong?
	3. How do I create right and a left vertical axes in plot.zoo?
	4. I have data frame with both numeric and factor columns. How do I convert that to a "zoo" object?
	5. Why does lag give slightly different results on a "zoo" and a "zooreg" series which are otherwise the same?
	6. How do I subtract the mean of each month from a "zoo" series?
	7. How do I create a monthly series but still keep track of the dates?
	8. How are axes added to a plot created using plot.zoo?
	9. Why is nothing plotted except axes when I plot an object with many NAs?
	10. Does zoo work with Rmetrics?
	11. What other packages use zoo?
	12. Why does ifelse not work as I expect?

